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Abstract

We present rigorous a posteriori error bounds for the Empirical Interpolation Method (EIM). The essential
ingredients are (i) analytical upper bounds for the parametric derivatives of the function to be approximated, (ii)
the EIM “Lebesgue constant,” and (iii) information concerning the EIM approximation error at a finite set of
points in parameter space. The bound is computed “offline” and is valid over the entire parameter domain; it is
thus readily employed in (say) the “online” reduced basis context. We present numerical results that confirm the
validity of our approach.

Résumé

Un estimateur a posteriori d’erreur pour la méthode d’interpolation empirique. On introduit des
bornes d’erreur a posteriori rigoureuses pour la méthode d’interpolation empirique, EIM en abrégé (pour Empirical
Interpolation Method). Les ingrédients essentiels sont (i) des bornes analytiques des dérivées par rapport au
paramètre de la fonction à interpoler, (ii) une “constante de Lebesgue” de EIM, et (iii) de l’information sur l’erreur
d’approximation commise par EIM en un nombre fini de points dans l’espace des paramètres. La borne, une fois
pré-calculée “hors-ligne”, est valable sur tout l’espace des paramètres ; elle peut donc être utilisée directement
telle quelle dans les applications (étape “en ligne” des calculs dans le contexte de la méthode des bases réduites).
On montre des résultats numériques qui confirment la validité de notre approche.
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Version française abrégée

Soit FM (·;µ) ≡
∑M
k=1 φM (µ)F(·;µm) une approximation de F ∈ C∞(D, L∞(Ω)), fonction qui joue le

rôle d’un coefficient paramétré “non-affine” dans la méthode des bases réduites. La méthode d’interpola-
tion empirique (EIM) sert à construire FM (·;µ) ; elle fournit aussi un estimateur de l’erreur d’interpolation
eM (µ) ≡ ‖F(·;µ) − FM (·;µ)‖L∞(Ω), qui n’est pas rigoureux mais qui est souvent suffisamment précis.
Dans ce travail, nous construisons rigoureusement une borne supérieure d’erreur a posteriori pour eM (µ).

D’abord, nous rappelons ce qu’est la méthode EIM. Ses ingrédients essentiels sont (i) la construc-
tion d’un espace d’approximation WM ≡ span{F(·;µm)}Mm=1 avec quelques valeurs µm, 1 ≤ m ≤ M ,
sélectionnées par un algorithme glouton, pour le paramètre µ ∈ D, et (ii) la sélection d’un ensemble de
nœuds d’interpolation TM ≡ {t1 ∈ Ω, . . . , tM ∈ Ω} associé à WM . L’approximation FM (·;µ) ∈ WM est
définie comme l’interpolant de F(·;µ) sur l’ensemble TM .

Ensuite, nous introduisons notre nouvelle borne d’erreur. Pour cela, nous développons F(x;µ) en une
série de Taylor à plusieurs variables, avec un ensemble fini Φ de points dans l’espace des paramètres
D ⊂ RP . Pour tout entier positif I, nous supposons maxµ∈Dmaxβ∈MP

I
‖F (β)(·;µ)‖L∞(Ω) ≤ σI (< ∞),

avec MP
I l’ensemble de tous les multi-indices positifs β ≡ (β1, . . . βP ) de dimension P et de longueur∑P

i=1 βi = I (pour 1 ≤ i ≤ P , βi est un entier positif) et F (β) la dérivée β-ième de F par rapport à
µ. Puis nous posons ρΦ ≡ maxµ∈Dminτ∈Φ |µ − τ |, nous définissons une “constante de Lebesgue” ΛM ≡
supx∈Ω

∑M
m=1 |VMm (x)|, où VMm (x) ∈ WM sont les fonctions caractéristiques VMm (tn) ≡ δmn, 1 ≤ m,n ≤

M , et nous pouvons alors prouver notre Proposition 2.1, soit : maxµ∈D eM (µ) ≤ δM,p, avec une borne
δM,p définie en (2).

Enfin, nous présentons des résultats numériques avec une fonction gaussienne F(x;µ) = exp
(
−
(
(x1 −

x̄1)2 + (x2 − x̄2)2
)
/2α2

)
sur Ω ≡ (0, 1)2. Avec un seul paramètre (scalaire) α ≡ µ ∈ DI ≡ [0.1, 1] et

(x̄1, x̄2) = (0.5, 0.5) fixé, on calcule maxµ∈Ξtrain eM (µ) et δM,p, p = 1, 2, 3, 4 pour 1 ≤M ≤Mmax (Fig. 1).
Nous observons que les bornes d’erreur commencent par décrôıtre puis atteignent un “plateau” en M .
On calcule aussi ΛM et l’effectivité moyenne η̄M,p pour p = 4 en tant que fonctions de M : la constante
de Lebesgue ne crôıt que légérement avec M , et les bornes d’erreurs sont très précises pour de petites
valeurs de M . Avec deux paramètres (x̄1, x̄2) ≡ µ ∈ DII ≡ [0.4, 0.6]2 et α = 0.1 fixé, les résultats sont
similaires au cas d’un seul paramètre (Fig. 2).

1. Introduction

The Empirical Interpolation Method (EIM), introduced in [1], serves to construct “affine” approxima-
tions of “non-affine” parametrized functions. The method is frequently applied in reduced basis approxi-
mation of parametrized partial differential equations with non-affine parameter dependence [4]; the affine
approximation of the coefficient functions is crucial for computational efficiency. In previous work [1,4] an
estimator for the interpolation error is developed; this estimator is often very accurate, however it is not a
rigorous upper bound. In this paper, we develop a rigorous a posteriori upper bound for the interpolation
error and we present numerical results that confirm the validity of our approach.

To begin, we summarize the EIM [1,4]. We are given a function G : Ω×D → R such that, for all µ ∈ D,
G(·;µ) ∈ L∞(Ω); here, D ⊂ RP is the parameter domain, Ω ⊂ R2 is the spatial domain—a point in which
shall be denoted by x = (x1, x2)—and L∞(Ω) ≡ {v | ess supv∈Ω |v(x)| < ∞}. We introduce a finite train
sample Ξtrain ⊂ D which shall serve as our D surrogate, and a triangulation TN (Ω) of Ω with N vertices
over which we shall in practice realize G(·;µ) as a piecewise linear function.

We first define the nested EIM approximation spaces WGM , 1 ≤ M ≤ Mmax. We first choose µ1 ∈ D,
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compute g1 ≡ G(·;µ1), and define WG1 ≡ span{g1}; then, for 2 ≤ M ≤ Mmax, we determine µM ≡
arg maxµ∈Ξtrain infz∈WG

M−1
‖G(·;µ)− z‖L∞(Ω), compute gM ≡ G(·;µM ), and define WGM ≡ span{gm}Mm=1.

We next introduce the nested set of EIM interpolation nodes TGM ≡ {t1, . . . , tM}, 1 ≤ M ≤ Mmax.
We first set t1 ≡ arg supx∈Ω |g1(x)| and q1 ≡ g1/g1(t1); then, for 2 ≤ M ≤ Mmax, we solve the linear
system

∑M−1
j=1 ωM−1

j qj(ti) = gM (ti), 1 ≤ i ≤ M − 1, and set rM (x) = gM (x)−
∑M−1
j=1 ωM−1

j qj(x), tM ≡
arg supx∈Ω |rM (x)|, and qM = rM/rM (tM ). For 1 ≤ M ≤ Mmax, we define the matrix BM ∈ RM×M
such that BMij ≡ qj(ti), 1 ≤ i, j ≤ M ; we note that BM is lower triangular with unity diagonal and that
{qm}Mm=1 is a basis for WGM [1,4].

We are now given a function H : Ω × D → R such that, for all µ ∈ D, H(·;µ) ∈ L∞(Ω). We define
for any µ ∈ D the EIM interpolant HWG

M
(·;µ) ∈ WGM as the interpolant of H(·;µ) over the set TGM .

Specifically HWG
M

(·;µ) ≡
∑M
m=1 φMm(µ)qm, where

∑M
j=1B

M
ij φM j(µ) = H(ti;µ), 1 ≤ i ≤ M . Note that

the determination of the coefficients φMm(µ) requires only O(M2) computational cost.
Finally, we define a “Lebesgue constant” [6] ΛM ≡ supx∈Ω

∑M
m=1 |VMm (x)|, where VMm ∈ WGM are the

characteristic functions of WGM satisfying VMm (tn) ≡ δmn, 1 ≤ m,n ≤M ; here, δmn is the Kronecker delta
symbol. We recall that (i) the set of all characteristic functions {VMm }Mm=1 is a basis for WGM , and (ii)
the Lebesgue constant ΛM satisfies ΛM ≤ 2M − 1 [1,4]. In applications, the actual asymptotic behavior
of ΛM is much better, as we shall observe subsequently.

2. A Posteriori Error Estimation

We now develop the new and rigorous upper bound for the error associated with the empirical inter-
polation of a function F : Ω × D → R. We shall assume that F is parametrically smooth; for simplicity
here, we suppose F ∈ C∞(D, L∞(Ω)). Our bound depends on the parametric derivatives of F and on
the EIM interpolant of these derivatives. For this reason, we introduce a multi-index of dimension P ,
β ≡ (β1, . . . βP ), where the βi, 1 ≤ i ≤ P , are non-negative integers; we further define the length
|β| ≡

∑P
i=1 βi, and denote the set of all distinct multi-indices β of dimension P of length I by MP

I . The
cardinality of MP

I is given by card(MP
I ) =

(
P+I−1

I

)
. For any multi-index β, we define

F (β)(x;µ) ≡ ∂|β|F
∂µβ1

(1) . . . µ
βP
(P )

(x;µ); (1)

we require that maxµ∈Dmaxβ∈MP
p
‖F (β)(·;µ)‖L∞(Ω) ≤ σp (<∞) for non-negative integer p.

Given any µ ∈ D, we define for 1 ≤M ≤Mmax the interpolants of F(·;µ) and F (β)(·;µ) as FM (·;µ) ≡
FWF

M
(·;µ) and (F (β))M (·;µ) ≡ F (β)

WF
M

(·;µ), respectively. We emphasize that both interpolants FM (·;µ)

and (F (β))M (·;µ) lie in the same space WFM—we do not introduce a separate space, WF
(β)

M , spanned
by solutions of F (β)(·;µM ), 1 ≤ M ≤ Mmax. It is thus readily demonstrated that (F (β))M (·;µ) =
(FM )(β)(·;µ), which we thus henceforth denote F (β)

M (·;µ). 1 Note that F (β)
M (·;µ) ∈ WFM is the unique

interpolant satisfying F (β)
M (tm;µ) = F (β)(tm;µ), 1 ≤ m ≤ M . We can further demonstrate [3] in certain

cases that if FM (·;µ) tends to F(·;µ) as M →∞ then F (β)
M (·;µ) tends to F (β)(·;µ) as M →∞.

1 Let Zq = [q1 . . . qM ] and t̄M = [t1 . . . tM ]. We then have FM (·;µ) = Zq(BM )−1F(t̄M ;µ) and (F(β))M (·;µ) =
Zq(BM )−1F(β)(t̄M ;µ). Since BM and the basis functions qi, 1 ≤ i ≤ M , are independent of µ, it follows that
(FM )(β)(·;µ) = (Zq(BM )−1F(t̄M ;µ))(β) = Zq(BM )−1F(β)(t̄M ;µ) = (F(β))M (·;µ).

3



We now develop the interpolation error upper bound. To begin, we introduce a set of points Φ ⊂ D of
size nΦ and define ρΦ ≡ maxµ∈Dminτ∈Φ |µ− τ |; here | · | is the usual Euclidean norm. We then define

δM,p ≡ (1 + ΛM )
σp
p!
ρpΦ P

p/2 + sup
τ∈Φ

p−1∑
j=0

ρjΦ
j!
P j/2 max

β∈MP
j

‖F (β)(·; τ)−F (β)
M (·; τ)‖L∞(Ω)

 . (2)

We can now demonstrate
Proposition 2.1 For given positive integer p, maxµ∈D ‖F(·;µ)− FM (·;µ)‖L∞(Ω) ≤ δM,p, ∀µ ∈ D, 1 ≤
M ≤Mmax.

PROOF. We present the proof for P = 1 and refer the reader to [3] for the general case P ≥ 1. For
brevity, we first define (assuming existence) ApG(τ, µ) ≡

∑p−1
j=0 G(j)(·; τ) (µ−τ)j

j! as the first p terms in the
Taylor series of G around τ . We then choose τ as τ∗(µ) ≡ arg minτ̃∈Φ |µ− τ̃ |. We note that

‖F(·;µ)−FM (·;µ)‖L∞(Ω) ≤ ‖F(·;µ)−ApF (τ∗, µ)‖L∞(Ω) + ‖ApF (τ∗, µ)−FM (·;µ)‖L∞(Ω) (3)

for all µ ∈ D. We recall the univariate Taylor series expansion with remainder in integral form F(x;µ) =
ApF (τ, µ) +

∫ µ
τ
F (p)(x; τ̄) (µ−τ̄)p−1

(p−1)! dτ̄ . We can now bound the first term on the right hand side of (3) by

‖F(·;µ)−ApF (τ∗, µ)‖L∞(Ω) ≤

∣∣∣∣∣
∫ µ

τ∗

∥∥∥∥F (p)(·; τ̄)
(µ− τ̄)p−1

(p− 1)!

∥∥∥∥
L∞(Ω)

dτ̄

∣∣∣∣∣ ≤ σp
p!
ρpΦ (4)

for all µ ∈ D. For the second term in (3), we obtain

‖ApF (τ∗, µ)−FM (·;µ)‖L∞(Ω) ≤
∥∥ApF (τ∗, µ)−ApFM (τ∗, µ)

∥∥
L∞(Ω)

+
∥∥ApFM (τ∗, µ)−FM (·;µ)

∥∥
L∞(Ω)

(5)

for all µ ∈ D. For the first term in (5) we note that

∥∥ApF (τ∗, µ)−ApFM (τ∗, µ)
∥∥
L∞(Ω)

≤ sup
τ∈Φ

p−1∑
j=0

ρjΦ
j!

∥∥∥F (j)(·; τ)−F (j)
M (·; τ)

∥∥∥
L∞(Ω)

 , ∀µ ∈ D. (6)

From the definition of the characteristic functions VMm , we obtain
∑p−1
j=0 F

(j)
M (x; τ∗) (µ−τ∗)j

j! −FM (x;µ) =∑M
m=1

[∑p−1
j=0 F

(j)
M (tm; τ∗) (µ−τ∗)j

j! −FM (tm;µ)
]
VMm (x). We then invoke the interpolation property (for

any non-negative integer j) F (j)
M (tm;µ) = F (j)(tm;µ), 1 ≤ m ≤ M , and the definition of the Lebesgue

constant ΛM , to bound the second term in (5) by∥∥ApFM (τ∗, µ)−FM (·;µ)
∥∥
L∞(Ω)

≤ ‖ApF (τ∗, µ)−F(·;µ)‖L∞(Ω) ΛM ≤
σp
p!
ρpΦ ΛM , ∀µ ∈ D. (7)

The desired result (for P = 1) directly follows.

We make several remarks concerning this result. First, we may choose p such that the two terms in
(2) balance—a higher p will reduce the contribution of the first term but will increase the contribution
of the second term. Second, we note that the bound δM,p is µ-independent. We can readily develop a
µ-dependent bound by replacing ρΦ with the actual distance between µ and the closest τ ∈ Φ; this
µ-dependent bound can serve (i) to adaptively construct an economical point set Φ, and (ii) to replace
the true (expensive) error in the greedy identification of the EIM spaces WGM . Third, we can increase
the sharpness of the bound by localizing the derivative bounds σp: this is best achieved through an “hp”
approach for the EIM; we note that the “hp” framework developed in [2] for the reduced basis method
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Figure 1. Error bounds δM,p for P = 1 and p = 1, 2, 3, 4 with nΦ = 41 (left) and nΦ = 141 (right).

readily adapts to the EIM (see also [5] for an alternative approach). Fourth, we note that in the “limit”
ρΦ → 0 the effectivity of the bound approaches unity; of course, we will never in practice let ρΦ → 0
because this implies the computation of the interpolant at every point in D. Fifth, we note that our bound
at no point requires computation of spatial derivatives of the function to be approximated.

We conclude this section by summarizing the computational cost associated with δM,p. We assume
that the bounds σp can be obtained analytically. We compute ΛM in O(M2N ) operations, and we
compute the interpolation errors ‖F (β)(·; τ) − F (β)

M (·; τ)‖L∞(Ω), 0 < |β| < p − 1, for all τ ∈ Φ, in
O(nΦMN )

∑p−1
j=0 card(MP

j ) operations (we assume M � N ); certainly the growth of MP
p will preclude

large P . Note the computational cost is “offline” only—the bound is valid for all µ ∈ D.

3. Numerical Results

We shall consider the empirical interpolation of a Gaussian function F(·;µ) over two different parameter
domains D = DI and D = DII. The spatial domain is Ω ≡ [0, 1]2; we introduce a triangulation TN (Ω)
with N = 2601 vertices. We shall compare our bound with the true interpolation error over the parameter
domain. To this end, we define the maximum error εM ≡ maxµ∈Ξtrain eM (µ) and the average effectivity
η̄M,p ≡ meanµ∈ΞtestδM,p/eM (µ); here, eM (µ) ≡ ‖F(·;µ)−FM (·;µ)‖L∞(Ω), and Ξtest ⊂ D is a test sample
of finite size nΞtest .

We first consider the case D = DI ≡ [0.1, 1] and hence P = 1; we let F(x;µ) = FI(x;µ) ≡ exp
(
−
(
(x1−

0.5)2 + (x2 − 0.5)2
)
/2µ2

)
. We introduce an equidistant train sample Ξtrain ⊂ D of size 500; we take

µ1 = 1 and pursue the EIM with Mmax = 12. In Figure 1 we report εM and δM,p, p = 1, 2, 3, 4, for
1 ≤ M ≤ Mmax; we consider nΦ = 41 and nΦ = 141 (ρΦ = 1.125 E – 2 and ρΦ ≈ 3.21 E – 3, respectively).
We observe that the error bounds initially decrease, but then “plateau” in M . The bounds are very sharp
for sufficiently small M , but eventually the first term in (2) dominates and compromises the sharpness
of the bounds; for larger p, the bound is better for a larger range of M . We find that 1 ≤ ΛM ≤ 5.18 for
1 ≤ M ≤ Mmax and, for the case p = 4 with nΦ = 141, η̄M,p ∼ O(10) (nΞtest = 150) except for large M .
The modest growth of the Lebesgue constant is crucial to the good effectivity.

We next consider the case D = DII ≡ [0.4, 0.6]2 and hence P = 2; we introduce F = FII(x;µ) =
exp
(
−
(
(x1 − µ(1))2 + (x2 − µ(2))2

)
/2(0.1)2

)
, where µ ≡ (µ(1), µ(2)). We introduce a deterministic grid

Ξtrain ⊂ D of size 1600; we take µ1 = (0.4, 0.4) and pursue the EIM with Mmax = 60. In Figure 2 we report
εM and δM,p, p = 1, 2, 3, 4, for 1 ≤M ≤Mmax; we consider nΦ = 100 and nΦ = 1600 (ρΦ ≈ 1.57 E – 2 and
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Figure 2. Error bounds δM,p for P = 2 and p = 1, 2, 3, 4 with nΦ = 100 (left) and nΦ = 1600 (right).

3.63 E – 3, respectively). We observe the same behavior as for the P = 1 case: the errors initially decrease,
but then “plateau” in M depending on the particular value of p. We find that 1 ≤ ΛM ≤ 39.9 and, for
the case p = 4 with nΦ = 1600, η̄M,p ∼ O(10) (nΞtest = 225) for 1 ≤M ≤Mmax.

Our results demonstrate that we can gainfully increase p—the number of terms in the Taylor series
expansion—in order to reduce the role of the first term of δM,p and to limit the size of Φ. We also note
that for the examples presented here the terms in the sum of (2) are well behaved, even though (for
our P = 2 example in particular) it is not obvious that the space WFM contains good interpolants of the
functions F (β)(·, µ), |β| 6= 0.
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